Anti-Derivative Word Problems

Example

1. I throw a ball up into the air with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Assuming that gravity produces a constant acceleration of $-10 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take for the ball to come back to the ground?

Solution: The initial acceleration is $-10 \mathrm{~m} / \mathrm{s}^{2}=a=\frac{d v}{d t}$. Finding the general form of the antiderivative gives $v(t)=-10 t+C$. We are told that initially $v(0)=$ $-10 \cdot 0+C=C=10$ so $v(t)=-10 t+10=\frac{d x}{d t}$. Finding another antiderivative gives $x(t)=-5 t^{2}+10 t+C$. Initially $x(t)=0$ so $C=0$ and hence $x(t)=-5 t^{2}+10 t$. Now we want to find when the ball to hit the ground, or when $x(t)=0$. This gives us $-5 t^{2}+10 t=-5 t(t-2)=0$ so $t=0$ or $t=2$. Thus, the answer is $t=2$ seconds.

Problems

2. An airplane starts accelerating at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. After 20 seconds, it finally lifts off the ground. How far did it travel before takeoff?

Solution: We know that the acceleration is $4=a=\frac{d v}{d t}$. Taking the indefinite integral, we get that $v=4 t+C$. Initially at time $t=0$, the plane is at rest so $v(0)=0$ and so $4 \cdot 0+C=C=0$. So, $v(t)=4 t$. We know that $v(t)=\frac{d x}{d t}$ so $x=2 t^{2}+C$ for some constant C. Initially, the plane has traveled a distance of 0 so $x(0)=2 \cdot 0^{2}+C=C=0$. Therefore, we have that $x(t)=2 t^{2}$. After 20 seconds, we have that the plane has traveled $x(20)=2 \cdot 20^{2}=800 \mathrm{~m}$.
3. A ball is dropped from a height of 500 m . Assuming gravity is $-10 \mathrm{~m} / \mathrm{s}^{2}$, how long does it take for the ball to hit the ground?

Solution: We have that $a=\frac{d v}{d t}=-10$ so $v=-10 t+C$. Initially it is at rest so $C=0$. Then $v=\frac{d x}{d t}=-10 t$ so $x=-5 t^{2}+C$. Initially, it is at a height of $500 m$ so $C=500$. We want to solve $x(t)=0$ so $-5 t^{2}+500=-5\left(t^{2}-100\right)=0$ so $t=10$ seconds.
4. A biker is initially traveling $45 \mathrm{~m} / \mathrm{s}$ and starts braking with a constant deceleration of $9 \mathrm{~m} / \mathrm{s}^{2}$. How far does he go before he comes to a complete stop?

Solution: We are given that $a=\frac{d v}{d t}=-9$ so $v(t)=-9 t+C$. Initially, we are told $v(0)=C=45$ so $v(t)=\frac{d x}{d t}=-9 t+45$ so $x(t)=-4.5 t^{2}+45 t$. We want to know how far the biker travels by the time $v(t)=0$ so when $9 t=45$ or $t=5$ seconds. So the biker travels $x(5)=-4.5 \cdot 5^{2}+45 \cdot 5=112.5 \mathrm{~m}$.
5. In t months from now, the population of Berkeley will be changing at a rate of $25+10 t^{2 / 3}$. If the current population is 2000 , what is the population 8 months from now?

Solution: Let $p(t)$ be the population in t months. We are given that $\frac{d p}{d t}=25+10 t^{2 / 3}$ so $p(t)=25 t+6 t^{5 / 3}+C$. We are told that $p(0)=2000$ so $p(t)=6 t^{5 / 3}+25 t+2000$. So in 8 months, the population is $p(8)=6 \cdot 32+25 \cdot 8+2000=2392$.
6. In t seconds, a bacteria population will be increasing at a rate of $50 e^{5 t}$. If the initial bacteria population is 200 , what will it be in 10 seconds?

Solution: We are told that $\frac{d P}{d t}=50 e^{5 t}$ so $P(t)=10 e^{5 t}+C$. We are told $P(0)=$ $10+C=200$ so $C=190$. Therefore $P(t)=10 e^{5 t}+190$. So in 10 seconds, the population will be $10 e^{50}+190$.
7. An atom is losing energy at a rate of $10 \mathrm{~J} / \mathrm{s}$. If the atom initially has 100 J worth of energy, how much energy will it have after 5 seconds?

Solution: Let E be the energy so $\frac{d E}{d t}=-10$ and so $E(t)=-10 t+C$. We have $E(0)=C=100$ so $E(t)=-10 t+100$. Thus after 5 seconds, we have $E(5)=$ $100-50=50$.

Riemann Sums

Example

8. Using limits, find the integral of x^{2} from 0 to 3 .

Solution: Splitting up [0,3] into n intervals gives the intervals of length $\frac{3-0}{n}=\frac{3}{n}$. So our intervals are $\left[0, \frac{3}{n}\right],\left[\frac{3}{n}, \frac{6}{n}\right], \ldots,\left[\frac{3 n-3}{n}, \frac{3 n}{n}\right]$. Using the right endpoints, we have that the Riemann sum is

$$
\begin{gathered}
R_{n}=\left(\frac{3}{n}\right)^{2} \frac{3}{n}+\left(\frac{6}{n}\right)^{2} \frac{3}{n}+\cdots+\left(\frac{3 n}{n}\right)^{2} \frac{3}{n} \\
=\frac{3 \cdot 3^{2}}{n^{3}}+\frac{3 \cdot 6^{2}}{n^{3}}+\cdots+\frac{3 \cdot(3 n)^{2}}{n^{3}} \\
=\frac{3^{3}}{n^{3}}\left[1^{2}+2^{2}+\cdots+n^{2}\right]=\frac{3^{3}}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}=\frac{27}{6}\left[2+\frac{3}{n}+\frac{1}{n^{2}}\right]
\end{gathered}
$$

Taking the limit, we have that

$$
\lim _{n \rightarrow \infty} R_{n}=\frac{27}{6}[2+0+0]=\frac{54}{6}=9 .
$$

