Anti-Derivative Word Problems

Example

1. I throw a ball up into the air with an initial velocity of 10m/s. Assuming that gravity produces a constant acceleration of $-10m/s^2$, how long will it take for the ball to come back to the ground?

Solution: The initial acceleration is $-10m/s^2 = a = \frac{dv}{dt}$. Finding the general form of the antiderivative gives v(t) = -10t + C. We are told that initially $v(0) = -10 \cdot 0 + C = C = 10$ so $v(t) = -10t + 10 = \frac{dx}{dt}$. Finding another antiderivative gives $x(t) = -5t^2 + 10t + C$. Initially x(t) = 0 so C = 0 and hence $x(t) = -5t^2 + 10t$. Now we want to find when the ball to hit the ground, or when x(t) = 0. This gives $us -5t^2 + 10t = -5t(t-2) = 0$ so t = 0 or t = 2. Thus, the answer is t = 2 seconds.

Problems

2. An airplane starts accelerating at a rate of $4m/s^2$. After 20 seconds, it finally lifts off the ground. How far did it travel before takeoff?

Solution: We know that the acceleration is $4 = a = \frac{dv}{dt}$. Taking the indefinite integral, we get that v = 4t + C. Initially at time t = 0, the plane is at rest so v(0) = 0 and so $4 \cdot 0 + C = C = 0$. So, v(t) = 4t. We know that $v(t) = \frac{dx}{dt}$ so $x = 2t^2 + C$ for some constant C. Initially, the plane has traveled a distance of 0 so $x(0) = 2 \cdot 0^2 + C = C = 0$. Therefore, we have that $x(t) = 2t^2$. After 20 seconds, we have that the plane has traveled $x(20) = 2 \cdot 20^2 = 800m$.

3. A ball is dropped from a height of 500m. Assuming gravity is $-10m/s^2$, how long does it take for the ball to hit the ground?

Solution: We have that $a = \frac{dv}{dt} = -10$ so v = -10t + C. Initially it is at rest so C = 0. Then $v = \frac{dx}{dt} = -10t$ so $x = -5t^2 + C$. Initially, it is at a height of 500m so C = 500. We want to solve x(t) = 0 so $-5t^2 + 500 = -5(t^2 - 100) = 0$ so t = 10 seconds.

4. A biker is initially traveling 45m/s and starts braking with a constant deceleration of $9m/s^2$. How far does he go before he comes to a complete stop?

Solution: We are given that $a = \frac{dv}{dt} = -9$ so v(t) = -9t + C. Initially, we are told v(0) = C = 45 so $v(t) = \frac{dx}{dt} = -9t + 45$ so $x(t) = -4.5t^2 + 45t$. We want to know how far the biker travels by the time v(t) = 0 so when 9t = 45 or t = 5 seconds. So the biker travels $x(5) = -4.5 \cdot 5^2 + 45 \cdot 5 = 112.5m$.

5. In t months from now, the population of Berkeley will be changing at a rate of $25+10t^{2/3}$. If the current population is 2000, what is the population 8 months from now?

Solution: Let p(t) be the population in t months. We are given that $\frac{dp}{dt} = 25 + 10t^{2/3}$ so $p(t) = 25t + 6t^{5/3} + C$. We are told that p(0) = 2000 so $p(t) = 6t^{5/3} + 25t + 2000$. So in 8 months, the population is $p(8) = 6 \cdot 32 + 25 \cdot 8 + 2000 = 2392$.

6. In t seconds, a bacteria population will be increasing at a rate of $50e^{5t}$. If the initial bacteria population is 200, what will it be in 10 seconds?

Solution: We are told that $\frac{dP}{dt} = 50e^{5t}$ so $P(t) = 10e^{5t} + C$. We are told P(0) = 10 + C = 200 so C = 190. Therefore $P(t) = 10e^{5t} + 190$. So in 10 seconds, the population will be $10e^{50} + 190$.

7. An atom is losing energy at a rate of 10J/s. If the atom initially has 100J worth of energy, how much energy will it have after 5 seconds?

Solution: Let *E* be the energy so $\frac{dE}{dt} = -10$ and so E(t) = -10t + C. We have E(0) = C = 100 so E(t) = -10t + 100. Thus after 5 seconds, we have E(5) = 100 - 50 = 50.

Riemann Sums

Example

8. Using limits, find the integral of x^2 from 0 to 3.

Solution: Splitting up [0,3] into *n* intervals gives the intervals of length $\frac{3-0}{n} = \frac{3}{n}$. So our intervals are $[0,\frac{3}{n}], [\frac{3}{n},\frac{6}{n}], \ldots, [\frac{3n-3}{n},\frac{3n}{n}]$. Using the right endpoints, we have that the Riemann sum is

$$R_n = \left(\frac{3}{n}\right)^2 \frac{3}{n} + \left(\frac{6}{n}\right)^2 \frac{3}{n} + \dots + \left(\frac{3n}{n}\right)^2 \frac{3}{n}$$
$$= \frac{3 \cdot 3^2}{n^3} + \frac{3 \cdot 6^2}{n^3} + \dots + \frac{3 \cdot (3n)^2}{n^3}$$
$$= \frac{3^3}{n^3} [1^2 + 2^2 + \dots + n^2] = \frac{3^3}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{27}{6} \left[2 + \frac{3}{n} + \frac{1}{n^2}\right]$$

Taking the limit, we have that

$$\lim_{n \to \infty} R_n = \frac{27}{6} [2 + 0 + 0] = \frac{54}{6} = 9.$$